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Abstruct-We consider the energy minimization problem for elastic bars with continuous damage.
where damage evolution is a function of strain evolution. Free energies with penalization terms are
shown to be compatible with the Clausius-Duhem inequality.

For free energies with and without penalization we show that minimizers of the total free
energy must be states where damage evolution vanishes.

l. INTRODUCTION

The view that the forming of macrocracks is the result of a loss of stability of a continuous
damage tield has gained wider acceptance in recent years (Lemaitre. 1986). Structures C'1n

accommodate moderate d,lmuge fields without failing (whut moderate means depends on
the particular case). Although a great amount of progress was made in this direction. we
arc still not close to a complete understanding of the passage fwm continuous damage to
fracture. Thcre may not be a unique answer: ductile damage ,Iml fragile damage may lead
to fracture by dilTerent mechanisms and the key to understanding each case may be dilTerent.

The problem that interests us here is that of the stability of dam.tged states. With this
question in mind we shall be mainly concerned with the energy minimization problem for
a one-dimensional bar.

We shall begin by describing the basic mechanics of the problem. that is the type of
cvolution laws for damage and the stress-strain relations that we take for experimental.
.tnd therefore immutable facts. We shall consider elastic materials. not necessarily linear.
where damage evolution is proportional to strain evolution.

In Section 3 we shall review the argument that leads from the Clausius-Dllhem
incquality to the well known thermodynamic relations between the energy. entropy and
stress functions.

Our first important observation is that a free energy function-more general in form
than the one normally derived-is still compatible with the Clausills-Duhem inequality.
This will be called a free energy with penalization.

In Section 4 we shall look at the energy minimization problem for free energy functions
without penalization and introdul:e for Section 5 the consideration of penalization terms.
In Sel:lions 4 and 5 we show that minimizers of the total energy cannot be states where
damage evolution is possible. That is. there ure states where dumage evolution is possible
and these are disjoint from states ofadmissible equilibria. This we shall argue is in agreement
with the phenomenon of stress accommodation seen in traction experiments. In Section 5
we also show how a relation might be est'lblished between the penalization funl:tion and
the evolution law for damage.

2. DAMAGE MECHANICS

Working conditions may alter the structure of a given material and consequently its
behavior. Frequently this alteration in structure consists in the appearance of microvoids
or microcracks. These can be described by a continuous damage field which measures their
density (Lemaitre and Chaboche. 1985). The amount of damage at each point then evolves
as a consequence of the continuing thermomechanical working. The law that governs this
evolution is a characteristic of each material and each type of damage. Damage is an
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fig. l. Damage evolution curve on the e. D plane.

irreversible process (at least we shall consider it to be so); thus. the time derivative of the
dam'lge variable must be positive (or zero).

In this work we shall consider damage evolution laws of the following type:

tJ =g(r.*.O)<e*) (I)

where 0 denotes a scalar measure of d'lmage. r.* is a scalar measure of deformation. .Q is a
positive function. <x) = ma'l {x.O} and a superposed dot denotes a time derivative.

In one-dimensional problems r.* is equal to the diplacement gradient 1:. We shall
normalize 0 so that it stays between 0 and I.

In one-dimensional problems for monotone evolutions of deformation. (I) leads to the
dil1"crential equation

(2)

whose integral we shall assume to exist and be given in the form of a monotone function

f) = G(/;)

G(/;,) =O. (3)

The critical value I;, is the strain at whkh damage evolution begins.
The set P" =: (1~.lJ)lg(c. D) > O} is the set of the r.. D plane where Ii > 0 if I: > O. Let

r he the region endosed by the graph of G and the lines e = 0, D = 0 and D = I. We have
the following possibilities for P".

(I) P" = r. In this case tJ > 0 whenever /: > o.
(II) p., = It = the graph of G. In this c.tse <.hlmage increases only along the curve /I.

and there is a (trivially) convex set

which governs the evolution of damage.
(III) It c P" cr. i.e. D evolves on a "fat" set to the left of It in Fig. I.

In Figs 2-4 we show examples of possible evolutions of (D. r.) indicated by the arrows. In
these ligures we have drawn r (the set under It) convex. We shall assume that to be always
the c'lse.

E

o
Fig. :. Two evolution curves for type I. One is monotone and follows the curve II and the other has

two points of discharge.
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Fig. 3. Same as above for type II.

E

o
Fig.... Same ,l~ ,IOOVC /(If type III.

Example. If

y=r.!(I-f)

lh~n

gives

which gives a convex set r.

Remark. The function 9 determines a vector field on the (D. ;;) plane along which D
and I: cvolVl:.

Example. Type IIf (sec Fig. 5). Similar figures can be drawn for types I and (I.

o
Fig. 5. (D. r.) evolution follow the arrows. Starred lines are two way.
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Stress-strain relations
In our choice for a constitutive relation we shall consider only elastic materials.
Letting (1 denote the stress we shall assume that

(1(1;, D) = £(D)I:' r>O. (4)

Here £(D) denotes the modulus of elasticity: as a function of damage it satisfies

£'(0) < 0

£(\) = O.

In many applic'ltions one can take

(1(t:, D) = Eo( I - O)f:

characterizing a line.lr elastic material with effective stress (1. (lemaitre and Chaboche,
1985).

(1. = 11'/ (I - D).

3. DAMAGE TflERMODYNAMICS

The actual thermodynamical evolution of a systcm must sutisfy the luws of thermo­
dynamics. Sinc.:e this must hold for any subsystem, on regions whc.:re the liclds ddining
thc thermodynamical proc.:ess are smooth, one C'1Il derivc the so-called local forms of these
laws. A combinution of the lirst law (where thc kinetic encrgy term is cancelled through
momentum bal'lIlce) with thc s,",-cond law yields the Clausius Duhcm incquality

(5)

Hcre I' is the mass dcnsity, <I) is the Ilclmholtz free energy, S is the cntropy, T is the
tcmperaturc. grad T is the tcmpcrature gradicnt and q is thc heut llux vcctor.

Suppose now that <I), S, (1 and,! arc differentiable functions of /;, T, D and gradT;
thcn using the chain rule on <b and (5), we get

IJ(/~II)i?T+S) t + (I' /'(1)/1'1; - (1): 1:+ I' <JI(> / DD [) + 1/ T grad T' '!

+p cJ<I>/DgradT gnidT ~ O. (6)

If /;, 1', D. gradT and their time derivatives can be chosen independently, one can show
(Cokman and Noll, 1963) that the following relations must hold.

and

cJ<l>/iJT(I;, T,D) = -S(£, T.D)

p v<l>/cr. (£, 1', D) == (1(£, T, D)

c:<1> /2grad l' (/;, T. D) == 0

;';<I>/DD (I:, 1', D) ~ 0

gradTq ~ O.

(7)

On the other hand, in the problem that interests us [) and f, arc not independent since
they must satisfy (I). In this case eqns (7) are still sufficient for (6) to hold for all pro­
cesses: but they arc no longer necessary.

Indeed, if e~ 0, t = 0 and gradT = 0
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p c<f>/oe-a ~ 0

and if It ~ o. t = 0 and grad T = O.

p c<f>/ce-a+pg c<f>/iJD ~ O.

Combining (8) and (9)

o~ p c<f>/ce-a ~ -pg c<f>/cD.

In particular. since 9 ~ O.

iJ<f>/oD ~ O.
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(8)

(9)

(10)

When 9 = O. (8) and (10) yield the usual (7h. but on Pq = {(e. D)lg(e. D) > O}. (10)
may be satisfied non trivially.

For instance we may have

<IJ(e. D) = <P(6. D>+h(r.. D)

with

p v<T> / i'Jr. = (1

as long as the function II satisfies

The function II will be called in this work a penalization term.

Exal1lp/e. With

9(1:. D) == I,

and

(1 = IJE(I-D)r.

give

4. ENERGY MINIMIZATION WITHOUT PENALIZATION

In this section we shall consider the energy minimization problem for a one-dimensional
bar with d~lm~lge and with the free energy function

<Il(r., D) = f(1(r., D> de = E(D)r.'+ '/(r+ I).

Throughout we shall take for granted that equilibrium states are those for which the
total free energy-including that of the external loads-is stationary, and that minimizers
of this energy are stable (locally if the minimizer is local).

Consider a one-dimensional bar of length L whose deformed length ;. is imposed. In
an isothermal situation one looks for minimizers of
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&"[6. D] =rp<l>(6. D) dx (II)

among all states (6. D): [0. L] R- x [0. I] such that

f 6dX =i..

In (II). Pis the reference density.
Suppose now that there exists a minimizer (f:. D) of 0" and let us take a variation

6<: = w(x) satisfying the constraint

Let

f
l'

(IJ dx = O.
"

L,- = :.\·e[O, L]lw(x) > 0:

L. = :.\·e[O, 1.11(I)(x) ~ O}.

( 12)

Thus, I.. and L are the parts of the bar where the deformation is increased and
dccn:ased. respectively.

Then

()(~V',I)I(/} = f Ui (~/II/h (E. 6)+/; (~/I,/aJ (1:.I).cJ(I~ ti)}(/} dx
I,.

since MJ = 0 if (k ~ O. and JD = 9W in L ...
If we take

f
l.

w(x) = u(x)-(l/L) u dx
II

for arbitrary u. evidently OJ satisfies (12). Then. after changing orders of integration. (13)

can be wrilten as

where

. _{p t/II/D.c: (~(x). ~(X»+p (~/I)/()[) (.l(X), D(x».q(E(x). 6(x»

H(.\) - P t/Il/?,: (c:(x), D(x» if XE L ..

If (i. 6) is a minimizer

/50"[1.. D]u ~ 0

ifxeL ..

for any II integrable on [0. L]. That is. using a classical lemma in the Calculus of Variations.
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H(x) ~ (1IL)f H(e) d~

which in tum implies

H{x) =:; OIL)f H(~) d~ =:; C

since a function cannot be greater than its average everywhere. Therefore

fj ctf)/ CE; (S. D) + fj (}tf) / cD (l, D)g{i. D) =:; C

and
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(l4a)

on L (14b)

must hold.
If we take now DE; = -ro. L+ and L_ change places. Since the constant C depends

only on the pair offunctions (i:. D). (14) implies that

Thus. unlcss (i:. FJ) takcs a valuc where (lell/(lD =:; O. minimizers of the total energy
must he at points were fI =(); that is where (5D =:; () for any (small) & positive or negativc.
In partil.:ubr if evolution is of type I. 110 s/tl/C' m.ty be a minimizer or the energy!

Remark. A simpler ilrgulllent than the one presented above can be used if one is
willing to take for granted that the medlilnical equilibrium condition

holds everywhere. Recause then it follows ilt once from (13) that

(M'[i.D]ro =:; r fj i)tf)/i)D{i,D)g(f.,D)w dxJ,

and since tell/CO ~ 0 and y ~ 0, Jt' ~ 0 if and only if9 cell/i)D =:; O. 0
Dam.lge evolution is un irreversible process. Since ('el> / iJD ~ O. absolute minimizers of

the total energy ure states for which f) =:; I. Rut there ure plenty of observable e4uilibria
that an: not absolutc' minimizers. Let us accompany the evolution of a system through a
scquence of metilstuble. equilibria: consider the problem of a one-dimensional bar in which
the stress (1* at one end is controlled and let us accompany the evolution of the bilr as (1*

varies. For a sequence of e4uilibria, each state must satisfy the mechanical equilibrium
condition

O'{x) == (1••

That is.

E{D(x»)r.'(x) = 0'*

or

(15)
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Fig. 6. Damage evolution at constant stress.

For given a*, equilibrium states must lie on the curve 0,,_ in the 6, D plane, defined by

( 16)

An easy computation shows that £'(0) < 0 and £"(0) < 0 imply that ,;'(0) > 0 and
/;"(0) > 0 if r > O.

Examf'/('. In the linear case

.tnd

/; ::: Ena* / (I - 0).

Thus. /:'(/)) > 0 and I:"(D) > () as is easily veritied.
Let us now plot the curve 0,,- detined by (16) with the curve It detined by (3) (see Fig.

6).
Suppose that damage evolution is of type II, that is damage evolves only along the

curve It and that r (the region below It) is convex. Any state in r can be attained following
the evolution law. States above It cannot be attained. Thus. there is a critical value of stress
(1, anove which there is no solution satisfying mechanical equilibrium. This is well in
agreement with the softening phenomenon found in experiments.

For (1* = (1,., the curves 0,,_ and It arc tangent at their (single) intersection point, which
lies on P.,. We have seen that such a point cannot be a minimizer of the total energy for
imposed length and is, therefore, unstable. To see that it is also unstable under imposed
external load, let us look at the free energy of the system including that of the external loads

il•

.3"[/;, DJ = {pl[>(C. D)-a*r.} dx.
()

Suppose E, 6 is a minimizer of .3". Then, with the same notation as in (13),

{5.:F [r., 6 Jm = r {ji i:([> / iJr. (r., 6)+Pc([> /cD (r., 6 )g(f, 6) - a*}w dx
J/' ~

+i {p i'J<f>/or. (r.,D)-a*}w dx

for arbitrary (I).
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Therefore we get (1~) with (1. replacing C and the same conclusion follows. namely
that minimizers must satisfy

(~<fJ/t'D (c. O)g(c. 0) = o.

Since for the cases we consider here

<fJ(e. D) = E(D)er
+ I /('+ 1)

and we assumed that

E(D) < 0

and

c<fJ/oD < O.

points in p. cannot be stable under applied external loads.
The derivative 01'<1> along the curve 0". defined by (16) is

d<l>/dD = ('<ll/t'f: dr./dD+D<fJ/liD

= - (£'(D)I:''' 1)/,(,+ I) > O.

Thus. for Ii xed stress. the free energy is smallest when D is smaller.
On the other hand

since

,lnd

v<II/DD < O.

( 17)

(I ~)

Therefore. for lixed stress. the total free energy of the system is smaller for larger D.
This. though. docs not imply that a state on 0". is necessarily unstable. This will only be
the case on parts of 0". where 9 > O.

If 9 > 0 only on It. the states nearer to it are less· stable since it takes smaller per­
turbations to bring them to a point (in It) where they can evolve to states of smaller energy.

If a state (I:. D) is in U". it s,ltisfies the Euler-Lagrange necessary condition (1. = (1 for
a minimizer, Further necess,lry and sullicient conditions have to be met to make th,lt st..lle
a minimizer (lOI.:al of global). Global minima cannot be found since (18) holds ,1I0ng the
states that s,ltisfy this necessary condition. The state on this curve that has the smallest
value of il<l) -1:(1· is unstable since it lies on It a region of possible damage evolution. A
local minimizer (r.. 0). on the other hand. is only required to satisfy

p4J(i:. D)-£(1· ~ p4J(e, D)-e(1· ( 19)

for any F.. D in an admissible ncighborhood; that is. for states that are ncar along Ihl!
possih/I! CllrL'/?S of I!t'ollilion.

For a state where 9 = O. (19) must hold for all e near to i.
Thus. a statc (c. 0) is a (strict) local minimizer of ~[e,D] if its image is on the curve

O".-strictly below II-and
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Fig. 7. An example of a penalization function.

E

iJ~<J)/{1~e (E, 0) ~ O.

The convexity of (ll in l; and D is not relevant. Note that

(1~(I);(I~I; = r£(D)I;' I.

Conclusion. For a free energy function without penalization, an evolution ktw for
damage of type I is thermodynamically inconsistent since no equilihrium state is a local
minimizer of the total free energy.

For an evolution law of type II, states whose image lie on the curve of evoluti(m II
cannot he minimizcrs. Any state in 0".11 :.Cf =0: may he a relative minimizer, hut not
an ahsolute one. The state of the system must be determined from the evolution. Non­
homogeneous inithtl data for d.tmage will lead to non-homogeneous local minimizers.

Similar considerations hold for evolutions of type Ill.
Since evolution must occur along II (type II), but there arc no equilibrium states on this

curve. the actual evolution of a system will show Ht every rest point a small accommodation
corresponding to the motion of the system to a neHrby stable state.

5. TIlE ~HNI\IUM I'ROULEM rOR A FREE ENERGY WITII !'ENALIZATION

We have seen in Section 3 that a free energy function of the form

with

is compatible with the Second Law of Thermodynamics if

('II/c'l:~O

and

ifg > O.

(20)

(21 )

Where.cJ = 0 we must have II = O.
For damage evolution of type II where g#:O only on H curve /1, the condition

9 = 0 => II = 0 requires II to be either identically zero or discontinuous. The first case was
already considered and the second viohttes the hypothesis of differentiability of If) used in
the derivation 01'(20) and (21). Here we shall simply say that a free energy with penalization
is incompatible with damage evolution of type II instead of reconsidering the Clausius­
Duhem inequality for discontinuous <Jl.

Suppose now that 9 is continuous. Then PI! has a nonempty interior. and in this set
(20) and (21) hold (Fig. 7).
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We now suppose that

J"[e.D] =r{p<'b(e. D) +ph(e. D)-u*e} dx

1265

has a minimizer i. D. Then. with the notation of (13) and <I> = <T>(i: D) etc.• it must satisfy

t5.F[f.. DJw = r {p c<I>/CE:+P Ciili~&+pg t<I>,iCD+M 8i/cD-u*}w dx1.

for all integrable (I) on [0. L].
This yields the pointwise conditions

and

Adding. we get

which is compatible with (21) if and only if.!J =O.
We .tre again led to the conclusion th'lt equilibrium occurs only .It points where.!J = 0

as in the c.lse without penalization. Thus. for the description ofelluiIibrium states a function
wilh pen.t1izution is indistinguishuble from one without In p'lrticulur, evolutions of type (
.m: lhermodynamic.tlly inconsistent.

The only type ofevolution where penalization might be of use is in evolutions of type
Ill. Note tll'lt, since 9 may be strictly positive only on a narrow band around It. in
experiments it might be dillicult to distinguish types II and III: specially with equilibrium
measurements.

We have thus shown that free energies with penalization arc compatible with thermo­
dynumics and th.tt in equilibrium they reduce to ordinury free energies without penaliza­
lion. We conjecture th.It penalization might be useful in calculations where dynamics play
an imporlunt role.

Remark. Above we have assumed that 9 is a given function: and from it we have
derived restrictions on the penalization function Iz. One may consider that" is given and
that 9 is (purtiully) determined by

which comes from (21). One could, for instance. take .'1 sutisfying the relution above with
equulity.

.kkllall'let!.qt·mt·n!s-This work was done in pari while the author was visiting the Laboratoire de Mecanique et
TI.'Chnologie. Cachan. France. I wish to Ihank Jean Lemaitre for his kind htlspitality and RI.'nc 8illardon and
Giuseppe Gcymonal for asking and answering so much: this work is the result of it. The financial support of
CAPES·Brasil and COFECUB-France made that visit possible.
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